11/20/18 Show feat. Kelsey Ockert on the Re-Origin of Species: Reversing Extinction with Science

Featured image: A rare image of the po’ouli, a now-extinct species of Hawaiian songbird last seen in 2004. The last known male failed to breed in captivity, but its body and genes have been cryogenically preserved in California. (Courtesy U.S. Fish and Wildlife Service)

The quest to bring back extinct species isn’t all about reviving mammoths 11,000 years after the Ice Age. Humans are causing a massive global extinction, affecting thousands of species due to habitat loss and changing climate, so it’s all we can do to stem the tide by preserving species in any way we can. Right now, a multifaceted band of scientists are gathering DNA of endangered creatures and using science to revive previously dead branches of the tree of life.

All of this comes forward in the great new book, “The Re-Origin of Species” by Torill Kornfeldt. Just translated from Swedish, the chapters chronicle different scientists’ quests to preserve life as we know it, covering the unbelievable possibilities already in play, as well as the moral dilemmas imposed by destroying and reanimating life. Thanks to Kelsey Ockert of the Princeton Public Library for the book review and giveaway!

In other news:

The playlist can be found online at WPRB.com or below.

Screenshot from 2018-12-13 16-57-31.png

Advertisements

10/30/18 Show feat. Kelsey Ockert on Black Hole Photography and the Event Horizon Telescope

Featured image: A simulated image of the dynamic region surrounding a black hole, showing off a “bump” that builds up due to magnetohydrodynamic motion. (Courtesy Dexter et al., Astrophysics Journal 2010)

How do we know what a black hole looks like? We have many theories about these ominous objects that are backed up by evidence, but one thing we haven’t done is seen a black hole—due to their tiny size and total darkness, nobody has been able to take a picture of one. We haven’t had a telescope sharp enough to see the black hole, until now: and it’s only a small and determined band of scientists, currently developing a telescope the size of the Earth, to break through the barrier and image a black hole for the first time. This week, we focus on the story of the Event Horizon Telescope, a massive undertaking whose results are due in the near future.

Kelsey Ockert is back on These Vibes for a book giveaway about this phenomenal scientific project. Check out “Einstein’s Shadow: A Black Hole, a Band of Astronomers, and the Quest to See the Unseeable” by Seth Fletcher! Thanks to the Princeton Public Library for the free book.

In other news:

The playlist is online at WPRB.com or below.

Screenshot from 2018-12-09 16-42-16.png

 

10/23/18 Show feat. Kelsey Ockert on Lidar: The Future of Laser Imaging

Featured image: Todd Neff’s new book shows how Lidar has, for example, revolutionized Aztec archeology by making it possible to map the rainforest floor underneath the trees. (courtesy Todd Neff)

This week is the first of a series of book giveaways we are bringing to our show (look out for more in coming weeks), thanks to Kelsey Ockert of the Princeton Public Library! Kelsey describes to us the history and future of Lidar, a laser imaging technology that’s enabling new research and technology in many unexpected ways. The book we discuss is “The Laser That’s Changing the World: The Amazing Stories behind Lidar, from 3D Mapping to Self-Driving Cars” by Todd Neff.

In other news:

Thanks for listening! The playlist can be found online at WPRB.com or below.

Screenshot from 2018-12-01 20-03-08

9/4/18 Show feat. Iris Stone on Nanostructures, Organic Electronics and Tagging the Brain

Featured image: Electronic skin can tell a computer about heat and pressure on a surface, just like our skin tells our brain. New flexible circuits by Dr. Jonghwa Park imitate biological systems with new electronic materials. (courtesy HighT3ch)

This week’s episode brings in Iris Stone, incoming Princeton University graduate student in the Princeton Neuroscience Institute and former researcher in nanomaterials. Iris started her science career in the Vora Lab at George Mason University, working with organic crystals that have unique applications in biotechnology, solar cells, and many other technologies. These charge transfer crystals, formed by intricate arrangements of organic molecules, can have convenient properties for carrying electronic signals, structural strength or flexibility, and more. Since they are organic (soft, unlike silicon computer chips) they could be used for the future of biotech—electronic contacts, wearable technology, medical implants… See how Iris connects this physics research into a focus on neuroscience, starting with artificial brain neurons, made out of organic electronics and replenishing parts of the brain lost from injury or disease, and eventually diving into the chemistry of the brain. Hear how local and global hormone buildup can affect our thoughts and moods, and how we might “tag” neurotransmitters with nanomaterial technology to follow their course through the brain.

Before the interview, hear about book that guides your intuition the macroscale processes occurring in our world: Factfulness by Hans Rosling with Ola Rosling and Anna Rosling Rönnlund. Do you know where people live and how they live? Do you know that the idea of an impoverished third world is an antiquated model that lost touch with reality decades ago? We highly recommend this book as a method of checking your assumptions and developing principles for relating to demographics and life on earth!

The full playlist can be found on WPRB.com or below.

IrisStonePlaylist_090418

6/12/18 Show feat. Chris Tokita on Division of Labor, Simulating Behavior and Scientists in Politics

Featured image: Studying ant behavior is easy when each individual is painted different colors and your lab has fancy video tracking software. (Courtesy Daniel Charbonneau)

This week, we feature Chris Tokita, graduate researcher in Princeton’s Ecology and Evolutionary Biology Department, who tells us about his work on division of labor and social networks. Computational biology lets us model behavior in a simulation: by picking a few rules and seeing if virtual groups behave like real groups in experiments, we can test what rules are most important for group functioning. Chris applies this strategy to clonal raider ants, which all have the same genetics but nonetheless form division of labor where some ants nurse, some forage, some clean… A simple rule where each ant feels a “threshold” for performing a task seems to explain this diversification, which makes the colony more successful. But there are unanswered questions concerning the clustering of insect social networks and the transfer of information through the colony that will keep Chris busy tuning his simulation—eventually, his studies might lead us to more generalizable facts about human society itself.

Listen through the end for the full story on Chris’s political work too, both at the federal Science and Technology Policy Institute and the local New Jersey General Assembly!

In other news:

The playlist can be found on WPRB.com or below.

Screenshot from 2018-06-12 20-23-54.png

8/21/18 Show feat. Dr. Chris Smiet on Flavors and Food Chemistry

Featured image: The famous Sichuanese mapo tofu, a dish that exemplifies the local mala palate. Note the careful dash of brown numbing seeds (huajiao) on top! (Courtesy J. Kenji Lopez-Alt)

On the menu today: Dr. Chris Smiet, a postdoctoral scholar at the Princeton Plasma Physics Lab, shares his expansive understanding of food chemistry. What prompts plants and spices to develop the complex chemicals that make them so flavorful to us humans? Hear how basil and carrots have special diversity amid similarities, and how modern cooking moves away from “recipes” and toward a general understanding of how ingredients mix in a scientific sense.

Chris mentions a book that taught him the essence of cooking: it was On Food and Cooking by Harold McGee. Pick up a copy to experience an encyclopedic foray through milk, molecules and your tastebuds.

Plus, listen to the preface before the interview for other topics in science:

  • There’s an overview of nanofabrication, the process of making tiny structures for electrical engineering, computer circuits. One central process in making these tiny marvels is to stack thin layers of metal on top of clean silicon chips.
  • A new glowing object in the auroral skies of Canada is not related to inflowing plasma from the sun, and thus represents a different atmospheric phenomenon than we’ve seen before.

The playlist can be found on WPRB.com or below.

Screenshot from 2018-08-25 12-33-25

8/14/18 Show feat. Kelsey Ockert and Ryan Ly on the Lives of Monarch Butterflies

Featured image: A hatching monarch butterfly emerges from its chrysalis, shedding its skin after ten days of transformative hibernation. A short glimpse of action that’s easy to miss… (Photography: SpiritMama)

Today, public librarian Kelsey Ockert and her partner Ryan Ly (PhD Candidate in Neuroscience at Princeton) drop in to our show to share their newfound hobby: raising monarch butterflies! As citizen scientists or aspiring insect lovers, anyone can order milkweed plants with monarch eggs for home delivery. As the eggs hatch and their caterpillars grew, Kelsey and Ryan had to fight to keep enough milkweed in the house to satiate the young insects. Learn more about insect parenting, caterpillar personalities and the great migration (that only 1/4 of monarchs take) to rest in enormous Mexican colonies!

Kelsey connects her insect parenting to one inspirational book: Monarchs and Milkweed, by Anurag Agrawal, is a beautifully detailed scientific dive into the amazing monarch butterfly. Check it out!

In other news:

The playlist can be found on WPRB.com or below.

Screenshot from 2018-08-22 21-06-41

8/7/18 Show. feat. Dr. Forrest Meggers on the Future of Comfortable and Sustainable Architecture

Featured image: Infrared light radiates from the walls of the Thermoheliodome, a structure that funnels energy outside of a room to keep its occupants comfortable. (courtesy Forrest Meggers)

 

This week’s episode features Dr. Forrest Meggers, Assistant Professor in Architecture and the Andlinger Center at Princeton, who designs structures that keep humans comfortable with light, not air temperature. Humans cool themselves through convection—where cool air takes heat away from you—and through radiation, where your body emits the infrared light you can see on night-vision goggles. Because this light carries energy, having too much or too little of it can change your perception of temperature just as much as the air can.

4468_0
Forrest Meggers in the Thermoheliodome.

Dr. Meggers and his CHAOS Lab have built many structures that funnel infrared light away from the occupants of a room, keeping them refreshed no matter the ambient temperature. This new way of thinking about temperature leads to huge efficiencies: instead of air-conditioning the volume of a room from floor to ceiling, we could deflect radiation to keep the ground, and ourselves, cool. Dr. Meggers explains the ways of measuring this invisible but all-too-important radiative heating in buildings, including the new SMART sensor his team is producing.

In other news:

The playlist can be found online at WPRB.com or below.

Screenshot from 2018-08-16 17-18-00

7/31/18 Show feat. Mariona Esquerda on Star Lifecycles and Ricard Alert on the Biophysics of Films

Featured image: The far edges of a cell, where center and membrane meet and adhere. Sometimes this adhesion worsens: see the red “blebs” surrounding a cell. (courtesy

Today’s episode features a Spanish physics duo! First, we speak with Mariona Esquerda Ciutat, physicist and science educator, about her whiteboard physics videos in Catalan. Hear how important it is to spread scientific knowledge in every language, and then hear Mariona explain the colorful life cycle of stars in English (and a bit of Spanish). Afterward, Ricard Alert Zenon, Postdoctoral Fellow in the Lewis-Sigler Institute for Integrative Genomics, delivers us to the wonderful world of biophysics. It’s a field that describes everything from the mechanics of cell membranes to the elaborate transportation strategies of microscopic organisms.  For example, a thin film of bacteria covers everything around us, with a myriad of species coexisting in their 2D world. How do these separate cells communicate, and how can the whole film act as a single superorganism?

In other news: A new park in Bangkok was designed with flooding in mind, reducing risk in nearby areas by siphoning water into expandable retention ponds. Disaster mitigation meets phenomenal civic architecture!

The playlist can be found on WPRB.com or below.

Screenshot from 2018-08-15 11-26-24

 

6/19/18 Show feat. Bora Yoon on Making Spaces with Sound

Featured image: Voices and sounds resonate through the Princeton University Chapel, as explored by Bora Yoon haunting its stairwells and alcoves.

This week on These Vibes, we open up to music and space with Bora Yoon, experimental multi-instrumentalist and Princeton Department of Music doctoral fellow. Hear Bora’s “sonic surrealism” where architecture meets sound, from the celestial Princeton chapel to the guttural “Little Box of Horrors.” We listen to (and occasionally narrate) the dimensions of these sound installations, wherein Bora mixes recordings of animals, heartbeats, voicemails, and illustrious instruments like wind chimes and music boxes. TalksThe compositions meld tensions, storytelling and environment—thanks Bora for sharing your musical methods in-depth!

In other news:

The playlist can be found on WPRB.com or below.

Screenshot from 2018-07-24 13-06-10