8/23/16 Show feat. Matt Grobis on the emergent properties of groups

Schools of fish, like these and the minnows Matt Grobis studies, display behaviors as a group that they cannot replicate as individuals. Image from: Octavio Aburto at Scripps School of Oceanography, UCSD.

Matt Grobis

This week on These Vibes, Stevie interviewed Matt Grobis,  graduate researcher in the department of Ecology and Evolutionary Biology here at Princeton. Matt is also director and co-founder of Princeton Open Labs which organizes science outreach talks and activities for local schools, and writes for a couple blogs: Highwire Earth, an interdisciplinary blog on sustainable development in our changing and growing society where he’s managing editor and co-founder (Matt and Julio Herrera Estrada, the fellow founder of Highwire, came on TVR2C previously for a short segment where they discussed the site) and The Headbanging Behaviorist, which mixes science, activism, and music (so he fits right in here at These Vibes Are Too Cosmic).

We began our discussion with some of the things animals can do together that they cannot especially do alone. Examples of these are migration and predator evasion. For example, the fish shiners prefer to stay in shadows because that will protect them from predators lurking above, but – as Matt discusses in the show – they can’t see the gradients in light well, and thus have difficulty find the shadows unless they’re in a group. Individuals could measure the light level where they were and would change their speed to match it, but they couldn’t actively move to darker areas, so they’re much more likely to be snapped up by a predator. (Here’s the study that found this.)
 Grobis conducts his research both in a lab with actual schools of minnows in a tank and cameras recording their movement (he even has some fake predator concoction to scare the fish), as well as “theoretically” – read: with computer models (like this interesting

School of minnows, from wikicommons.

agent-based model he mentions in the show). Matt’s lab research measures what’s called the “startle.” This is the wave that passes through a school of minnows, for example, when they are, well, startled. In the show Matt also calls this a “cascade.” (Here’s the original paper on startles , also featured in Cell, that Matt’s research is building on.) Matt is seeing if the mechanisms by which the cascade spreads hold up when there’s elevated perception of risk in the environment. Preliminary results indicate that under increased perception of risk, startles might spread a bit differently!

As an example of interesting group behavior, Matt later discussed a specific study (“Uninformed individuals promote democratic consensus in animal groups”, Couzin et al. 2011) that was done with schools of fish. In this experiment the group cannot break apart, but part of the group wants to go towards a blue stimulus and another part really wants to go towards yellow – the behavior that emerges is interesting and seems very relevant to human situations we get in to all the time. (Choosing a dinner place in a big group, anyone?) You can take a look at the study here, and read a blog entry in Headbanging Behaviorist where Matt discusses what happened behind the scenes (a kind of “making of” of the study – this will  be much more accessible than reading the paper itself).
After the interview, Matt noted that “one of the reasons Couzin et al. 2011 is so cool is that they started with the models and found the results in that theoretical universe on their computers. Then, they really hammered it home by showing it’s true in the real world too. So it’s more a good example of the power of combining theoretical models with experiments.” How cool!
In the show we received some excellent listener questions. One listener asked whether Matt’s research on the behaviors of groups could be used to control humans. From this we determined that maybe “control” was a bit strong, but that perhaps this group research could help us better guide traffic, be it in a street or a busy transit hub like an airport. Remember, “ants don’t have traffic jams.”
(In this part Matt mentioned research on autonomous robots that his adviser Iain Couzin is working on. It’s sponsored by the Office of Naval Research and is shared with Mechanical and Aerospace Engineering Professor Naomi Leonard.)
If you live in the Princeton area, and especially if you have school-aged children, please check out Matt Grobis’s side project Open Labs!
The great minnow.

playlist 082316

8/16/16 Show feat. author Brad Watson on his new novel, Miss Jane


Featured image: A tomato hornworm being devoured, “casually,” by wasp larvae in their cocoons. Courtesy Wikimedia Foundation and the penultimate chapter of Miss Jane.

We were fortunate this week to air a phenomenal interview with author Brad WatsonProfessor of Creative Writing at University of Wyoming and acclaimed novelist with two short-story collections and two books. His newest work, Miss Jane, just came out in July 2016, so we took the opportunity to ask Brad about the writing process and how he came to think of the world from Jane’s perspective.  The conversation meanders through questions of gender identity, nature and Southernness, and feeling like the odd one out–it’s a thoroughly fascinating talk, so listen to the audio above and don’t just take my word for it.

missJane.jpgThe novel centers around Jane Chisolm, born on a cattle farm in 1915 Mississippi. From her first hours, Jane is defined by a birth defect: it leaves her incontinent and incapable of sex. Modern surgical technology could remedy a condition like this immediately. But in her day and age, Jane is left without recourse. The novel captures its heroine’s full arc, and over its course Brad explores the many consequences of Jane’s affliction.

A character like Jane is hard to relate to, especially for an author writing a century later with little to go off of but a childhood in the South. The story’s inspiration comes through a great-aunt, a mysterious figure that Brad only met once and knew mostly through old photos. Because of the lack of information, the novel took 13 years to write, only beginning seriously in 2013 when Brad connected his great-aunt’s story with a plausible medical condition that made her feel more concrete.

Even then, Brad couldn’t get a good look at who Jane might have been as a person without developing the story’s supporting characters. A small cast of dynamic personalities, including Jane’s nuclear family and the doctor that treats her, bolster the novel and give Brad different lenses into seeing Jane. He makes a point that characters shouldn’t be written into a story unless they help the reader understand the protagonist–and in this sparse collection of characters, Brad’s writing makes everyone seem like a piece of the puzzle, not just illuminating Jane but giving shape to the novel’s central conundrums.

The writing stands out for its perceptive descriptions of the natural world. Jane finds solace in the Southern forest near her home, where Brad remarks that everything is strange if you look hard enough: from mushrooms in the soil to fish that sift water through their gills to breathe. To a character that feels like an outsider in the human world, the oddities of wilderness are a comfort.

We talk a while about the strangeness of the South, too. It’s a place Brad doesn’t think

“Meditating” : Evocative pencil artwork from Mary Jane Parker, another artist focusing on nature and the South.

he’ll be able to get over, even now that he lives in Wyoming and only visits his childhood home occasionally. More than anywhere else in the US, the South maintains its own mentality, and the roots of it are deeply twisted around a history that Southerners spend their lives trying to process. Brad doubts he can stop writing about the region, since he has such a backlog of stories it has inspired.

On my mind as I read Miss Jane was the plot’s intricate connections with the American dialogue on gender identity. Brad clarifies that he began the novel years before this debate became mainstream, though he did wonder about Jane’s possible intersexuality in the course of defining her as a character. In the end, he writes Jane as a heterosexual female–which is fitting for the times, since 1920s Mississippian culture had no notion of the gender spectrum. Still, the foil between Miss Jane and our modern conversation is an important one, since Jane’s life was severely affected by a lack of medical technology that nowadays gives us the power to perform, say, sex reassignment surgeries.

I can’t recommend this book highly enough–not only is it an entertaining and beautiful read, but the wholeness which Brad builds into his characters is obvious from the start. For more information on the rest of his book tour or on Miss Jane, visit Brad’s website here.

Our show-closer comes from a listener who asked, semi-seriously, if the grass is truly always greener on the other side. Semi-seriously, we answer: the phrase came first from the Billy Jones tune above. Statistically, of course, your grass is probably about as green as everyone else’s, but Stevie brings us back to the real meaning of the phrase (comparing your well-being to others) and how it might explain Trump supporters.

As always, the playlist is on WPRB.com or below.

Screenshot from 2016-08-17 18-16-40.png

8/9/16 Show feat. Dr. Edgar Choueiri on plasma propulsion and 3D sound engineering


Featured image: NASA’s Dawn mission, currently orbiting its second destination in the Asteroid Belt, is equipped with an ion thruster to boost its efficiency and make visiting multiple bodies possible. Courtesy NASA’s JPL.

Dr. Edgar Choueiri of Princeton’s Mechanical and Aerospace Engineering is on the air this week, and he brings his innovative physics applications to our conversation. Hear all about the dramatic Hall thruster technology as a method of space propulsion, and then get blown away by the idea of virtual-reality 3D sound. Throughout the interview, I had the feeling that science fiction was coming to life out of Edgar’s research, so check out the full recording to be really amazed at where technology is headed.

A Saturn Five rocket lifts off (from NASA).

Edgar began his work at Princeton researching space propulsion. For many years, we’ve had a solution to this problem: chemical thrusters, which burn massive amounts of fuel to blast rockets up into space. However, it’s clear that this method is horribly inefficient. Just look at a typical Saturn 5 rocket, where a tiny payload sits on a massive container of fuel. All chemical thrusters work this way, since the amount of rocket fuel needed to lift a load out of Earth’s gravity is about ten times the mass of the load. Since combustion ejects particles at a particular speed of a few kilometers per second, we’re stuck with this inefficiency as long as we burn chemicals to get into space.

The most obvious way to improve this picture is by forcing particles out of a spaceship at higher speeds. We can achieve this acceleration by propelling the rocket with plasma, a charged gas that responds to electric fields. By making an electric field–which is easy to do with some solar panels and a metal grid–the spacecraft ejects plasma at any speed we like, which can drastically improve the thrust efficiency. Edgar makes an analogy of driving across the country: a chemical rocket is so inefficient that you need to stop for gas tens of times between New York and California, whereas a plasma thruster would let you go the whole way without refueling.

A Hall thruster on display from U. Michigan’s PEPL.

In some ways, we’re stuck with chemical rockets, because plasma engines aren’t good enough to get us out of Earth’s atmosphere. But once a spacecraft is in orbit, Edgar’s thrusters make the next steps cheaper and quicker. For example, a trip to Mars might take nine months with chemical fuel, but only three months with plasma fuel.

Edgar has seen a lot of progress in implementing these new technologies over the years. When he began graduate school, ion thrusters were science fiction; now they’re used widely by NASA and private companies. A newer design, the Hall thruster, uses clever arrangements of electromagnetic fields to keep particles confined and boost efficiency. And as Edgar’s group improves the Hall thruster design, it’s also seeing more use in space–perhaps an explosion in their use is coming, as Edgar hints at by mentioning SpaceX’s interest in the technology.

Aside from space propulsion, Edgar has another specialty that’s seeded a second laboratory at Princeton: 3D audio engineering. When we hear sounds, our brains can pinpoint their origin beneath our conscious awareness. An airplane overhead, a voice behind us… we could point to a sound’s source even if our eyes were closed. Unfortunately, reproduced sound from speakers or headphones has lost this spatial signature. To Edgar, hearing the breadth of a symphony confined to the location of a speaker isn’t authentic. That’s why he’s working to restore three-dimensionality to recorded audio.

Our ears can find a sound’s source from three cues. The first is the small delay between sounds reaching your right ear and your left ear, or the inter-aural time difference. Second is the loudness of sound in one ear compared to the other, or the inter-aural level difference. Lastly, the specific shape of your earlobes funnels sounds to your eardrums, and this personalized filter lets our brain know whether a sound is near or far, above or below.

A simple way to record in 3D: use a dummy head. From Hooke Audio.

Since the 1960s, we’ve mastered the first two cues, typically by recording sounds from two microphones on the sides of a dummy head. In fact, these “binaural” recordings are enough for about a third of the population: the inter-aural time difference and inter-aural level difference will convince them that sounds are happening in 3D. For the rest of us, though, the unique shapes of our own ears affects our spatial perception of sound. Making a recording that everyone will perceive as truly 3D means we need to record audio specially for each pair of ears. Further, your brain expects sound to move from right to left when we shake our heads: but recordings don’t move along with you. So, there are a lot of obstacles to perfecting 3D audio for everyone.

Edgar’s group is fighting off these remaining problems one at a time. One of his students, Joseph Tylka, makes facial recognition software to track head movements and modify audio playback in real time, so that the 3D experience is uninterrupted when you shift around. Another student, Rahulram Sridhar, is developing a method to tune 3D audio to your earlobes with quick image analysis. Finally, the group is working on sound wave cancellation, so that different areas in space would receive completely different soundwaves from the same set of speakers.

All this innovation sounds far fetched, but these projects are moving along quickly–and Edgar foresees a lot of short-term applications. Imagine four friends sitting in a car, all listening to the same sound system but all hearing different tracks individualized to their ears. Everyone can navigate through a virtual 3D sound field, listening to hyperrealistic concerts from the mezzanine or from behind the stage according to their wishes. If Dr. Choueiri’s lab succeeds, we could have sound systems like this in the very near future.

For more information on present-day technology for 3D sound, check out Jambox and LiveAudio, which Dr. Choueiri demonstrates during the interview.

The playlist can be found at WPRB.com or below.

Screenshot from 2016-08-11 16-48-00.png

8/2/16 Show feat. Sam McDougle on learning and motor skills (re-aired) + dynamo in the Earth’s core


Featured Image: These fMRI images from Jean Gotman at McGill highlight a small part of the brain, because it’s statistically more active than it was at some other moment. Remember: the other 90% of the brain is still actively in use!

For this week’s show, we replayed an earlier interview from Sam McDougle, a graduate student in the Department of Neuroscience at Princeton. He and Stevie dive into his research on motor skills, learning, and the brain, and they debunk the ever-popular myth that we only use 10% of our neurons at once. After the interview, I describe the Earth’s dynamo problem and some new research from Osaka University that raises more puzzles than it solves.

Sam and the rest of the Taylor Lab want to know what the brain is doing when we learn new skills. We’re all used to the feeling when something clicks and a skill becomes easy for us: riding a bike, cutting with scissors, and typing have all become automatic for us eventually. But initially, developing a new task into a skill requires practice. Building up muscle memory and neuronal networks that fit the task is a long process in the brain, and it’s hard for science to unveil completely. As Sam says, researchers rarely find conclusions, they just scramble for hints until they can piece together ideas about the truth.

To study the learning process, Sam first experimented on mice, fitting them with brain electrodes and having them repeat behaviors. But even though the brain fundamentals are very similar between mice and humans, the complicated tasks that people have to learn go beyond the range of mouse-science. Now, Sam brings in human volunteers to study instead, and relies on less invasive data collection (like fMRI instead of electrodes inside the skull).

Fancy brain imaging from Princeton Neuroscience Institute.

To be clear, there’s a lot going on in the brain at once. An fMRI scan may just show a small blob of color somewhere in the brain, but this highlight just shows a place where the brain was more active than it used to be before the experiment. Sam’s brain scans might showcase, for example, neural areas that handle muscle memory; but even as these particular brain sections are especially active, the rest of the neurons are still abuzz. The myth that “we only use 10% of our brains” might have originated in Dale Carnegie’s famous self-help book, How to Win Friends and Influence People–and even there, it only appears as a misattributed quote in the foreword. So don’t believe the rumors, because your whole brain is always hard at work.

Testing hypotheses on human subjects is no easy matter. For one, Sam can’t have people learn nuanced skills in the experiment. To teach thirty subjects to play the violin and measure their brainwaves as they do it will take months, will cost a lot, and won’t be very repeatable from person to person. Instead, Sam and his colleagues have to think of tasks that are complicated enough that we must learn them, but are still so simple that the study can proceed quickly and repeatably.

One result of  the studies so far is the demonstration of “implicit” versus “explicit” motor skill learning. Teaching someone to snowboard might involve phrases like “keep your weight on your back leg” or “dig in to brake;” these “explicit” instructions give the learner some reference for improving quickly. But, verbal commands alone can’t do the whole job, since most of the learning comes from testing behaviors out.  Imagine reading a book about swimming and then jumping in the pool for the first time: you’d still have a lot to figure out about treading water. The implicit skills you develop from trying, failing, and trying again are ultimately the backbone of mastering a task. Sam’s results show that implicit and explicit learning are stored in different parts of the brain, and the research is still attempting to find connections between the two.

Sam closed the interview with a bit about his own musicianship. Among many projects, he plays and records his own music as Polly Hi. I anachronistically played a song from Deceleration, Sam’s newest album, which actually came out months after this interview last year.

I ended the show with a major problem in astrophysics and geology: why is the Earth still magnetized? From what we know about currents and electricity, magnetic fields should decay over time and eventually die out. However, the Earth has a strong magnetic field: it keeps us safe from the solar wind, helps maintain our atmosphere, and brings the auroras to the poles. So, something doesn’t add up. The Earth’s core must have some net current or flow that maintains the magnetic field over billions of years.

Scientists at Osaka University just did an experiment to simulate the Earth’s core and resolve this issue once and for all. The core is made of nickel and iron, so the group put iron wires into a diamond anvil–a device that generates gigantic pressures on a tiny area in a lab. By heating the wires with lasers and putting a current through them, the scientists measured how well iron can conduct a current in the middle of the Earth. Based on their measurements and how strong the Earth’s magnetic field is, the Earth should be about 700 million years old. The problem: it’s much, much older than that (over 4 billion years!).

earths layers
The Earth, decomposed into its parts. Don’t let pictures like this fool you into thinking we have it all figured out!

What does this puzzling result tell us? Largely, it’s that there are properties of the Earth’s core that we don’t understand at all. You might think that by being space explorers and mastering fracking and plate tectonics, we’d have figured out the composition of the Earth by now. Unfortunately, while we do understand the crust and mantle of our planet, the nickel-iron core is inaccessible to direct measurement. We can study waves that pass through the middle of the Earth, and we can study high-temperature high-pressure materials in the lab, but understanding the complex motions at the middle of the Earth is probably a long way away.

As always, the playlist is on WPRB or below.

Screenshot from 2016-08-02 20-10-34

7/26/16 Show feat. Dr. Andrea Graham on the immune system, cytokine storms, and sheep + ice algae


Featured image: Nematodes, pictured inside a sheep on Scottish isle St Kilda. If the immune system has to choose between fighting this worm and malaria, how should it prioritize? (credit: Graham Group)

(Audio note: Unfortunately, this week’s recording is not great. First, it starts a few minutes into the interview, so you miss the introduction; second, a recording issue distorted the quality. If anyone has a better-quality recording, let us know!)

Our guest this week was Dr. Andrea Graham, a professor in the Department of Ecology and Evolutionary Biology here at Princeton. She brought us her insight into the immune system, so we dove into the good and bad sides of the cells that usually keep us healthy. Toward the end, I talk briefly about the importance of sea ice algae in the Arctic regions, and how those Northern ecosystems might be in danger if the ice sheets shrink.

Dr. Andrea Graham, researching sheep in Scotland. (see full album)

Andrea finds the immune system fascinating. It’s a decentralized system, with no one governing body, so it must deal with problems locally: each cell works independently. When white blood cells gang up on diseases in the body, they communicate their strategies by sending each other small protein messages. These cytokines let nearby white blood cells attack the bacteria in unison; they might also transmit messages globally through the blood stream to share antibody information with the rest of the body (this is how long-term immunization works).

The problem with decentralized systems is that they can overreact by all acting at once. If every white blood cell in the body reacts simultaneously to a new threat, the whole stream is flooded with cytokines. Your immune system’s overreaction causes fever and swelling–and sometimes even death. It’s hard to produce medicines that work against these cytokine storms, since there’s a delicate balance between stopping the immune system from self-harm and preventing it from fighting real diseases. Discovering a medicine that would slow the system gently is “the million dollar question,” Andrea says.

As with anything that has limited resources, the immune system competes with other systems in the body. It takes energy to fight nematodes and energy to reproduce, but sometimes there’s not enough energy to do both. Andrea’s group studied a sheep population, brought to a Scottish Isle centuries ago and left without predators since, to see if real groups of animals have individuals choosing between health and reproduction.

The big breakthrough came when the group found anti-correlations between sheep who reproduced often and sheep whose immune systems cleaned away parasites effectively. In fact, many sheep had healthy worm populations living in the gut, even though the worms were harmful and cost the individual resources. Trade-offs like this mean a great immune system isn’t always beneficial.

This alternative study from Imperial College blames overactive immune systems for schizophenia.

Another balance we discussed was having a weak immune system versus to an overly-strong one. White blood cells clump together to suffocate bacteria and other threats, but they can go overboard and clump up more dangerously. These groups of white blood cells block passageways over time, leading to illness. Lupus is one example of an autoimmune disease that acts in this way–and Andrea’s group is looking for correlations between being lupus-prone and having a strong immune system. By joining an existing collaboration that studied the population of Taiwan over time, the group found evidence for that correlation.

Finally, I ended the show with science news: algae living in the seasonal polar ice caps of the Arctic are crucial bedrock of the Northern food chain. The result comes out of this study from the Alfred Wegener Institute in Germany. Scientists drew fat samples from tens of species in the Arctic Ocean, tracing the composition of fats in the animals back to sea algae living in the ice. Evidently, 60-90% of the nutrition delivered to herbivores comes from this food source, which is worrying since the ice caps are quickly shrinking.

We’ll be back next week with more, better-recorded radio. Thanks for tuning in!

The full playlist is on WPRB.com, or below.

Screenshot from 2016-07-29 18-25-47.png

7/19/16 Show feat. Dr. Alfred Bendixen on science fiction + Ingrid Ockert with Groovy Science

KatnissFeatured image: Katniss, of the best-selling book/movie series The Hunger Games. (courtesy Wall Street Journal).

Our show this week welcomed Alfred Bendixen, Professor of English at Princeton University, who spoke with us about science fiction and the philosophy behind it. The discussion hit on many of our past shows, and gets into questions on cultural evolution and epistemology. Then, we close with Ingrid Ockert, returning to the show with another book review. She covers Groovy Science, a series of essays about the connections between 1960s scientists and hippies.

Alfred focuses his literary studies on genres that sit on the border between scholarly and popular. Detective novels, horror stories, science fiction–academia usually ignores these categories, even though they reflect aspects of society worth studying. Science fiction,

The mix of science and fantasy in Jekyll and Hyde. 

Alfred says, is written at the intersection of three ways we seek knowledge about the world: science, religion, and storytelling. Since the genre can dive into all three methods, it gives a unique perspective on our aspirations and fears about the future.


As an example of how sci-fi can inform us about our culture, Alfred brings up The Hunger Games. This enormously-popular series describes a dystopian world with a sadistic government of unaware aristocrats. Its heroine, Katniss, is named after a plant–in contrast to the broken bureaucracy that governs humans in the books, she turns to nature for stability and comfort. The story leaves plenty of room for interpretation, and can be championed by right- and left-wingers alike. The Hunger Games complex and unsettling speculation about our civilization’s future is what makes it successful, both on bestseller lists and for Alfred’s examination. As he says: “the greatest works of literature provide multiple lenses.”

As a genre, though, Alfred prefers the term “speculative fiction” to sci-fi. The writing is interesting because it wonders about our future, mixing probable developments in technology with fantasy. “Think of every science fiction story as a thought experiment,” puts Alfred, as if authors are considering the consequences of particular decisions our society makes now. The best of these stories are introspective, giving plenty of room to ponder. Alfred wonders about the hero of The Martian, sitting alone on Mars, who spends hours and hours growing potatoes but not much time contemplating his lonely existence. It’s “hard” science fiction, firmly seated in facts and real science, but it fails at examining our place in the universe and the consequences of sending humans to other worlds.

The Martian, a book without much introspection.

I asked Alfred about the Juno orbiter, mentioned in our last show, which is slated to commit suicide into Jupiter to avoid spreading life to Europa and other moons. These questions about space travel are hugely prevalent in science fiction, of course, but the way they’ve been approached has changed over time. Many books assume that exploring the universe is a triumph of mankind over nature. We explore other planets, learn about the vastness of space, and experience the fragility of life in alien environments–but we never worry about polluting the Solar System or contaminating other worlds with unwanted life. As science fiction has developed, it has begun to take on more complicated pictures of morality in science. Modern works might ask: what do we stand to gain by going to space, and what do we stand to lose?

Finally, we ended the interview with an ongoing project of Alfred’s: studying “sources of terror” in American literature. There might be universal human responses to fear, but what if we examine cultural differences in our responses instead? For example, British stories feature castles owned by aristocrats, and the protagonist’s goal is to find her proper place in the world. In American stories, though, we don’t have castles: the thing to fear (and to conquer) is the expanse of nature itself, the Wild West of the American continent. And when our stories conclude, we don’t find a place for ourselves, we create one.

The Terminator’s villainous portrayal of robots.

The way we process fear in stories changes over time, too: look at robots as an example. Early literature was terrified by androids and mechanization, represented as inhuman villains in Terminator or I, Robot. But as technology has become central to our everyday lives, we have a more ambiguous relationship with robots in literature, with some benevolent and some evil. As our culture’s opinions develop gray areas and nuance, so do our stories.


After the interview, Ingrid Ockert came on air to give a summary on a book about the history of science. This week, it was Groovy Science, a collection that examines the relationship between science and counter culture during the 60s-70s.  Our stereotype of scientists after WWII was one of a bored academic in a lab, writing notes in a white labcoat. But this stodgy picture fails to incorporate the real social role of scientists in the following decades. As hippies and scientists interacted, new research became prevalent: finding better materials for surfboards, brewing better craft beer, investigating the effects of psychedelics in a lab… Groovy scientists left the shelter of academia to work on such projects, and the role that science plays in our lives has changed as a result.

Thanks to both of our wonderful guests this week!

As always, the playlist is below or on WPRB.com.

Screenshot from 2016-07-21 11-03-22.png

7/12/16 Show feat. Gloria Tavera (re-air) on Pharmaceutical R&D and Access to Medicines, plus the future of the Juno spacecraft

In this episode of These Vibes Are Too Cosmic, we re-aired an interview with Gloria Tavera, researcher in immunology and clinical translation at Case Western Reserve University andtavera_gloria president of the board of directors for Universities Allied for Essential Medicines. (Interview begins a couple minutes in to the recording.)

This interview was first aired in January 2016 (and was actually Part II, where in Part I Tavera discussed immunology and her research in malaria). In our discussion we take a deep dive in to the research and development process for pharmaceuticals. This takes us to the murky world of drug costs and the twisted incentive structure we have here in the US. In the final part, Tavera walks us through how this structure could be changed to obtain a better, more efficient pharmaceutical system that works for the public rather than the drug company share-holders.

In the last 15 minutes of the show Brian tells us about the fascinating, kamikaze future planned for the Jupiter satellite, Juno (and why!).

Screen Shot 2016-07-13 at 6.03.30 PM

7/5/16 Show feat. Charles Swanson on compact fusion and SpaceX plus Juno on Jupiter/space balloons


Featured Image: A SpaceX Falcon 9 launches from Cape Canaveral, FL, carrying a capsule full of cargo to the International Space Station in April 2015.

We were lucky enough to have a show full of space this week, covering all sorts of travel outside our atmosphere: NASA’s Juno orbiter just reached Jupiter last night, and long-duration atmospheric balloons are almost ready to launch regularly from New Zealand. But best of all, we had Charles Swanson, current PhD candidate in Plasma Physics at Princeton and former employee of SpaceX, tell us about space travel and his views on fusion energy.

Charles had always been looking to space, and he paid attention when Elon Musk’s revolutionary rocket venture SpaceX began in 2002. He earned an internship at the company in 2012, where he worked firsthand on the difficult mission of landing a rocket on the ground. To make spaceflight an everyday venture, we need to be recycling our vehicles: imagine if every airplane flight ended in a crash landing and we had to live with one-time-use 747s! But firing things into space requires immense speeds, so it’s very difficult to have rockets survive both the ascent into orbit and the return down to our planet.

In the end, SpaceX had to engineer its rockets to withstand the brutal vibrations of a

SpaceX’s Falcon 9 rocket under construction. Courtesy NASA.

launch alongside the destructive environments of high atmosphere and outer space. Alongside working on the reusable Dragon capsule, Charles played a crucial role in this endeavor: he tested the self-destruction button for the rocket. In a way, this is the most important part, since making a mistake with the landing is far worse than never landing at all. Of course, engineering a self-destruction button is a big task. The button must never be pressed accidentally (even by shaking during an ascent into space), but if you do press it, the button had better work. Charles’s experience speaks to the true difficulty of designing anything for space: it will have to endure nature at its most severe.

On the whole, Charles is optimistic about the future of spaceflight. He sees the present day as an age where launching rockets is open to companies, not just governments. And this could blow open the space industry–we’ll see a lot more tech development in the field over the next decades, and who knows what possibilities might lie in that direction for consumers and scientists. Charles had a lot to say about Musk’s influence on the company: his decisions happened on every level, from budgeting and big-picture plans to engineering the minutiae of engine wiring.

A cartoon of a tokamak, courtesy of EUROfusion.

After the internship at SpaceX, Charles did the only natural thing and began pursuing a PhD in Plasma Physics at Princeton. In his role as a researcher, Charles studies a special time of fusion reactor (a topic we’ve covered before on this show). But today, the leading choice for making fusion happen is big and costly: the tokamak contains a plasma very well, even if its structure takes years to build. An alternative reactor type that  keeps fusion power cheap and small is the FRC (Field Reversed Configuration).

The FRC’s versatile, simpler design comes from using the plasma itself to act as a magnet. A plasma is just a charged gas, and Charles’s group creates currents in the plasma that help to confine itself. Therefore, the whole system saves on magnet costs and can be much smaller: think small enough to fit on a spaceship or in your garage. An exciting future use for these machines might just be as fusion rockets, which could thrust a rocket across the galaxy using fusion power.

An older version of the Princeton FRC which used to sit in Sam Cohen’s lab. It has since been upgraded, but the machine still fits on a tabletop.

Before and after Charles talked with us, we got to some massive news for space explorers. Our show was timely enough to happen the very day that Juno arrived at Jupiter–and this is years in the making! The spacecraft Juno lifted off from Cape Canaveral here on Earth in


2011, then took two years to circle the sun before arriving back near Earth for a gravitational assist.  Now, three years later, it finally reached the Giant Planet. What we know about Jupiter came from Galileo, a craft launched in 1989: it surveyed the many moons, and gave glimpses into Jupiter’s formation. We’ve had to wait until now for our newest technology, which is capable of seeing through Jupiter’s clouds, to learn more about the giant’s inner makeup. Give it a few years, and we may learn more about how the Solar System formed from its observations.

Stevie closed the show with a final way to travel to space–well, near Earth space, but still far above our atmosphere. Ballooning already gives scientists a great option for seeing the sky without interference from the turbulent air above us. Instead of sending a telescope into space with a rocket, letting it float up on a huge balloon is less violent for the instrument and saves us money. We have places like McMurdo in Antarctica that do this regularly (that’s where Stevie’s SPIDER telescope launched), but having a new path in the sky would let us have longer trips. To this end, NASA wants to build a New Zealand balloon base, capable of sending off long-lasting aircraft–and it’s working on the Super Pressure Balloon to help. The researchers just set a new record for balloon flight, and Stevie is optimistic about where this is headed. Stay tuned for more ways into space and more telescopes scouring the sky!

As always, the playlist is at WPRB.com or below.



6/28/16 Show feat. Professor Alexander Ploss on Research in Infectious Diseases and It’s Global Importance

Featured image is that of an interactive map of vaccine-preventable disease outbreaks across the globe, created by the Council on Foreign Relations. You can find it, and explore it yourself, at this link.

In this installment of These Vibes Are Too Cosmic, we spoke with Dr. Alexander Ploss,

Dr. Alexander Ploss
Professor Alexander Ploss, Princeton University

professor in molecular biology here at Princeton. His research focuses on immune responses to human pathogens – specifically those infecting the liver, including hepatitis B and C viruses, yellow fever and dengue viruses and parasites causing malaria in humans. His group combines methods in tissue engineering, molecular virology and pathogenesis, and animal construction, to create and apply technologies to study human liver diseases caused by infectious diseases and if possible intervene in them. Specifically, he works to create “humanized mice” so we can study in lab mice diseases that typically only infect humans (and other very related species like great apes). In this interview, he discusses how his lab does this and the importance of this research.

I asked Professor Ploss to come speak with us because this topic of infectious diseases is incredibly important. Almost a quarter of the all human deaths worldwide occur due to infectious diseases. And, according to the WHO, in high-income countries like the United States, 7 in every 10 deaths are among people aged 70 years and older, and we perish primarily due to non-communicable diseases like cardiovascular diseases and cancer.
In contrast, in low-income countries nearly 4 in every 10 deaths are among children under 15 years, with only 2 in every 10 deaths are among people aged 70 years and older. In low income countries people predominantly die of infectious diseases like the ones studied by Professor Ploss.

Take a listen.

Screen Shot 2016-06-29 at 9.19.20 PM

6/21/16 Show feat. astrophysicist Chuck Steidel on galaxy formation & redshift + Stevie on New LIGO


Featured Image: The sky, as viewed from New Mexico or Chile by Sloan Digital Sky Survey. Pointed out is a quasar at extreme redshift, almost 15 billion light years away.

Dr. Chuck Steidel, Caltech astrophysicist and former WPRB DJ, was kind enough to come into the studio during a visit to Princeton several weeks ago. He and his son Nicky (a current DJ at the station) were putting together a clash-of-generations show, so we snagged him for a talk about galaxy formation, extreme redshift, and next-generation telescopes. After that, Stevie brings us a highlight of recent LIGO results: more black-hole mergers have been detected!

Chuck is interested in the ancient universe. Back in those days, soon after the Big Bang, the first clouds of gas were clumping together to form rocks and stars. It was a chaotic time: stars were igniting at alarming rates, and UV radiation would have caused serious sunburns for creatures like us. But understanding this period can tell us how early stars formed–which helps us learn how stars progressed to form complicated elements like carbon and oxygen.

Of course, looking at something so old is not easy: it’s so far away that not much light reaches us, and the light that does has actually warped. Since the universe is expanding, the light gets redder and redder as it travels. If our telescopes on Earth can see enough light to detect these ancient star clusters, it can use how “red” the light gets as a measure of how far away the galaxy is. And this is a great tool: if a galaxy’s light is “redshifted” enough, Chuck knows it’s an old enough galaxy that it still has stars forming quickly.

Redshift “Doppler effect,” as shown on ScienceBlogs.

Of course, when the light gets redder it gets harder to see. The signal starts to blend in with light emitted from our atmosphere. So, the best plan is to put giant telescopes up in space: they need to be large to collect lots of light, but also far above the Earth to avoid atmospheric defects. Keep in mind, sending telescopes to space costs money and takes time for organizations like NASA to coordinate. As they wait for these projects to develop, astrophysicists use ground telescopes to get initial observations of distant galaxies for hints about the better data to come.

JWST, currently under construction at NASA Goddard.

One example of a next-generation telescope, steps beyond Hubble in many ways, is the upcoming James Webb Space Telescope. Not only will it have much finer resolution in the infrared for seeing distant galaxies, it’s fitted with a sensitive spectrometer to measure the precise colors of these objects. And Chuck is especially excited about that, because it will allow him to learn what elements are being churned up in these early galaxies. For now, the team takes measurements on two ground telescopes: Keck in Hawaii and Palomar in San Diego.


In the end, Chuck and I agree that science done just to satisfy human curiosity is a worthwhile pursuit. It may not lead to a better app or cure cancer, but most humans wonder about the universe outside our planet. Science for science’s sake might lead to technology we use elsewhere, but advancement is not the main point-and that’s OK. We close out with Chuck’s recollections of summers spent in the WPRB basement, where he hosted shows every day and often visited City Gardens in Trenton to interview alternative bands passing through.

After the interview, Stevie brings us more exciting news concerning our detection of gravity waves. You’ve heard in the news about LIGO’s first discovery, where they heard two black holes merge together from a billion light years away. The team has spent decades building and

The region in the sky where the second black-hole merger was found by LIGO in December.

perfecting a massive laser observatory, one that measures tiny shifts in laser light to detect small movements in the structure of space. Only massive gravitational events (like collisions between black holes and neutron stars) can cause movements this big. And it’s getting better, because LIGO just announced a second detection of gravitational waves that they found in December. With this development, it appears even more likely that we can use gravity-wave observations to tell us about the most massive things in our universe. So stay tuned for more revolutionary science from the scientists at LIGO!




As always, the playlist is either below or at WPRB.com.Screen Shot 2016-06-22 at 10.01.13 PM.png